Ka-Band Utilization and Technology Study UPN 315-90-11

David Zillig

Semi-Annual Review of the FY97 SOMO/MO&DSD Technology Development Program

April 15, 1997

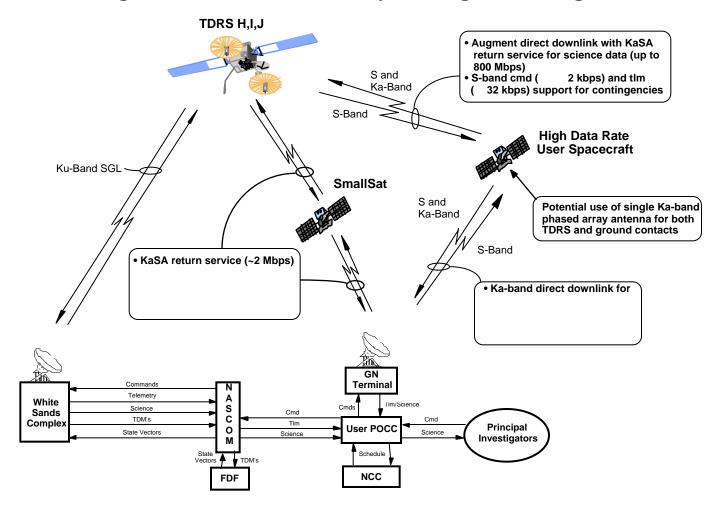
Ka-Band Utilization and Technology Study Objective and Significance

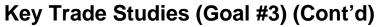
GSFC

Overall Objective

Study Ka-band utilization and implementation issues for LEO spacecraft to ensure a coordinated evolution to TDRS H,I,J or direct downlink services

<u>Goals</u>	Significance			
#1: Define the range of users and user needs unde consideration	er Current SN users can benefit from Ka-band links transmit higher data rates with the increased bandwidth available and can implement smaller antenna on the spacecraft than those required for band or S-band.			
#2: Establish architectural and operations concept options	 New approaches to operation and command/ sciedata transport are possible by the higher performance Ka-band service. 			
	 Potential for increased science data throughput a greater user flexibility. 			
#3: Perform trade studies - Performance and operational trades - Identification of available technology - Frequency allocation and selection issues - Identification of risk areas	 Validates operations concepts to ensure efficient of SN and GN resources. 			
	 Ensures needed technologies are available for fulflight projects 			
	 Supports the definition of needed technology demonstrations 			
#4: Define the best strategies for evolution to Ka-b service	arBy developing a coordinated strategy for introduce of Ka-band capabilities to the user community, the effort will minimize the proliferation of user-uniquesolutions that require redesign and repurchase for each new mission.			
	 Defines plans for future Ka-band technology development efforts with emphasis on phased arr antenna development 			


Ka-Band Utilization and Technology Study



GSFC

 SN/GN operations concept developed to give users the option of communicating via TDRS H,I,J or directly to a high latitude ground station.

Ka-Band Utilization and Technology Study

- "Off-the-shelf" Ka-band ground station and space qualified components are available as a result of a number of Government and industry efforts:
 - NASA ACTS and TDRS H,I,J programs.
 - NASDA's COMETS and ETS-VI programs.
 - ESA's OLYMPUS program.
 - Iridium's feeder link ground stations.
- Components typically designed for 20/30 GHz operations and would require some modifications for 25.25 27.5 GHz operation.
- Ground components include antennas LNAs, power amplifiers and high data rate receivers.
- Space qualified components include dish antennas, LNAs, modems, RF switches, and power amplifiers.
- Due to rapid pace of current commercial development, within 3 years there will be an abundance of Ka-band equipment, space qualified and flying
- Most companies currently developing Ka-band equipment are not interested in selling it or publishing specifications.

Ka-Band Utilization and Technology Study

- Goal of evolution strategy is to minimize impact to users when transitioning to Kaband.
- Ka-band evolution strategies include:
 - Plan and implement a Ka-band ground terminal that supports direct downlink and TDRS H,I,J testing.
 - Implement a Ka-band capability for the 4th Generation User Transponder.
 - Develop Ka-band phased array antenna for flight demonstration.
 - Perform flight demonstrations of transponder and phased array on future LEO missions to validate "dual-use" concept (direct-to-ground and TDRS H,I,J).
 - Develop an internal Web site to promote interactive exchange of Ka-band technology information.

Ka-Band Utilization and Technology Study FY97 Accomplishments

- Surveyed industry on current trends in ground terminal design and implementation.
- Defined users and user needs.
- Developed three candidate Ka-band ground terminal architecture/operations concept (Goal #2).
- Updated survey of available Ka-band technology.
- Submitted an abstract to the 3rd annual Ka-band Utilization Conference.

Ka-Band Utilization and Technology Study Schedule

Task	FY96				FY97			
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
FY 97 Goals Refine ops concept & evolution plans Update Ka-band technology database Perform ground terminal architecture design Develop an Internet Web site for Kaband info exchange	WI .				\(\frac{\pi}{2}\)	. UKZ	=	7